ProCS15: a DFT-based chemical shift predictor for backbone and Cβ atoms in proteins
نویسندگان
چکیده
We present ProCS15: a program that computes the isotropic chemical shielding values of backbone and Cβ atoms given a protein structure in less than a second. ProCS15 is based on around 2.35 million OPBE/6-31G(d,p)//PM6 calculations on tripeptides and small structural models of hydrogen-bonding. The ProCS15-predicted chemical shielding values are compared to experimentally measured chemical shifts for Ubiquitin and the third IgG-binding domain of Protein G through linear regression and yield RMSD values of up to 2.2, 0.7, and 4.8 ppm for carbon, hydrogen, and nitrogen atoms. These RMSD values are very similar to corresponding RMSD values computed using OPBE/6-31G(d,p) for the entire structure for each proteins. These maximum RMSD values can be reduced by using NMR-derived structural ensembles of Ubiquitin. For example, for the largest ensemble the largest RMSD values are 1.7, 0.5, and 3.5 ppm for carbon, hydrogen, and nitrogen. The corresponding RMSD values predicted by several empirical chemical shift predictors range between 0.7-1.1, 0.2-0.4, and 1.8-2.8 ppm for carbon, hydrogen, and nitrogen atoms, respectively.
منابع مشابه
Protein structure refinement using a quantum mechanics-based chemical shielding predictor.
The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy ...
متن کاملInvestigation of fullerene (C60) effects on chemical properties of Metoprolol: A DFT study
In this research at the first Metoprolol drug and its fullerene derivative were optimized. Natural bond orbital (NBO), nuclear Indepndent chemical shift (NICS) and finally IR calculations, for these compounds were carried out at the B3LYP/6-31G* quantum chemistry level. Different parameters such as energy levels, the amount of chemical shift in different atoms, the amount of HOMO/LUMO, chemical...
متن کاملInvestigation of fullerene (C60) effects on chemical properties of Metoprolol: A DFT study
In this research at the first Metoprolol drug and its fullerene derivative were optimized. Natural bond orbital (NBO), nuclear Indepndent chemical shift (NICS) and finally IR calculations, for these compounds were carried out at the B3LYP/6-31G* quantum chemistry level. Different parameters such as energy levels, the amount of chemical shift in different atoms, the amount of HOMO/LUMO, chemical...
متن کاملInvestigation of Chemical Properties in Fullerene Derivatives of Fluoxetine Drug : A DFT Study
In this research at the first fluoxetine drug and its fullerene derivative were optimized. NBO calculations and NMR for the complexes were carried out at the B3LYP/6-31G*quantum chemistry level. Different parameters such as energy levels, the amount of Chemical Shift in different atoms, the amount of HOMO/LUMO, chemical potential (µ ), chemical hardness (η), Thermodynamic Properties was determi...
متن کاملThe Effect of Aluminum, Gallium, Indium- Doping on the Zigzag (5, 0) Boron-Nitride Nanotubes: DFT, NMR, Vibrational, Thermodynamic Parameters and Electrostatic Potential Map with Electrophilicity Studies
Influence of Aluminum, Gallium, Indium- Doping on the Boron-Nitride Nanotubes (BNNTs) investigated with density functional theory (DFT) and Hartreefock (HF) methods. For this purpose, the chemical shift of difference atomic nucleus was studied using the gauge included atomic orbital (GIAO) approch. In the following, structural parameter values, electrostatic potential, thermodynamic parameters,...
متن کامل